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Thermal conductivity in the quantum Hall effect regime 
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Abstracl. General expressions for both components of the thermal conductivity lensor of a 
two-dimensional electron gas in the presence of impurity disorder in a strong magnetic held 
are derived within the self-consistent Born a p p r o x i d o n .  Analytical and numerical results 
are obtained for asymptotic and intermediate cases respectively. It is found that the shape 
of the thermal conductivity dependence on the chemical potential is govemed by the relation 
between temperature and impurity potential amplitude. Bath thermal conductivity components 
as funclions of chemical polential are shown to exhibit deviations from the Wiedemann-Franz 
law for hnite temperatures near Landau level psitions. 

1. Introduction 

Two-dimensional (2D) electron systems in a strong transverse magnetic field have attracted 
close attention since the discovery of the quantum Hall effect (for an extensive review see 
[l]). One of the most unclear problems in this field is the heat transport. The main difficulty 
that appears in heat transport studies originates from the fact that the temperature gradient 
is a non-mechanical disturbance, i.e. it  cannot be represented directly as a perturbation 
of a microscopic Hamiltonian. Different ways to avoid this obstacle have been proposed. 
The first approach is to use the electron Lagrangian as a starting point for calculation of 
a heat current as an energy flow in Lagrange formalism [2,3]. The second was originally 
proposed by Luttinger [4]. It incorporates the pseudo-gravitational field connected with VT 
through the Einstein relationship included in the Hamiltonian. Then the heat current can be 
calculated by the usual way with the diagrammatic technique based on Hamilton formalism, 
i.e. by means of Kubo formulae. Nevertheless, it can be shown in connection with quantum 
Hall effect problems that transverse (Hall) currents are screened by the surface ones in 
strong magnetic fields, which results in violation of the Kubo formulae for macroscopic 
(measurable) currents [SI. In this case non-diagonal components of the kinetic coefficient 
tensor can be expressed through the thermodynamic potential while for the diagonal ones 
the Kubo formulae remain valid. 

With respect to the Luttinger approach the dependence of the thermopower tensor 
components on chemical potential, temperature and impurity concentration in the quantum 
Hall regime has been studied in detail [6-8]. The situation for the thermal conductivity (TC) 
tensor is obscure however. This problem was discussed by Oji [9, IO] who discovered that 
the dissipative (diagonal) component of the T c  tensor has a characteristic 'two-peak' shape 
versus the chemical potential while the non-dissipative (non-diagonal) one exhibits plateaus 
similar to those for electrical conductivity. He also found that the Wiedemann-Franz law 
is violated for the diagonal component only while it holds for the Hall one. His approach 
however does not take into account correctly the effect of electron-impurity interaction on 
the kinetic coefficients. 
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In the present paper analytic expressions for the TC tensor components in a 2D 
electron gas with impurity disorder in a quantized magnetic field are derived by means 
of the diagrammatic technique within the self-consistent Bom approximation (SCBA). Both 
asymptotic expressions and numerical results for intermediate cases are obtained. It is 
shown that both diagonal and non-diagonal components of the TC tensor exhibit deviations 
from the Wiedemann-Franz law. In section 2 general expressions for both components of 
the heat cument in the quantum Hall effect regime are derived. Section 3 and section 4 
are devoted to the analysis of transverse and diagonal TC components respectively; results 
obtained are discussed in section 5. 

2. Heat current in @e quantum Hall effect regime 

Below we follow the approach of Luttinger [4,11,12] to calculate the heat current as the 
response of a 2D electron system to the temperature gradient applied. 

The phenomenological transport equations can be written as 

I 

I 

where I and Q are macroscopic electric and heat currents respectively, V@ is the pseudo- 
gravitational field, p is the chemical potential, c is the velocity of light and i i j  are the 
transport coefficients. ?e thermal conductivity tensor can be expressed in these terms as 
k = T - ' ( ~ Z ~ - ~ Z I L ~ ' L ~ ~ ) . ) .  The phenomenological transport coefficients at TV( l /T)  and 
-V*/c2 must be equal to each other (Einstein relationship). The origin of this fact is the 
absence of an energy'current at equilibrium. Therefore, the problem is solved by introducing 
the pseudo-gravitational field that is a purely dynamic force (in contrast to the statistical 
one V T )  and can be 'included in the Hamiltonian. So if starting from the expression for the 
heat current operator [I31 

(where e and m are the electron charge and mass respectively, $r and @+ are electron field 
operators in Heisenberg representation, A is the vector potential, the magnetic field B is 
directed along the z axis, and here and below we set A = 1) we can obtain the Kubo formula 
[14,2] (for the case of magnetic fields see [15]) by introducing the interaction representation 
and averaging the expression for heat current over the grand canonical ensemble: 
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Here @ is the potential of pseudo-gravitational field defined so that VT = -a@/&, ne 
is the density of electrons and G is the one-electron Green function in the coordinate 
representation. It is convenient to use the Keldysh diagrammatic technique [16] (see the 
review in [17]) to avoid the analytic continuation from Matsuban frequencies that is usual in 
the kinetic coefficient calculation. In this case the product of two G functions in equation (5) 
should be understood as a matrix product, and a vertex factor $ arises 1171. 

The Kubo formula in equation (4) defines the microscopic heat current as a response to 
V T .  As was shown earlier [5] the macroscopic transverse currents are governed in strong 
magnetic fields not by the microscopic current (4) but by diamagnetic currents flowing on 
the sample surface. So equation (4) cannot be employed for the calculation of non-diagonal 
components of the TC tensor (as well as for the thermopower tensor). In the case under 
consideration the transverse component of the heat current can be expressed through the 
thermodynamic potential [18,19,1 I]: 

Here S = -aQ/aT is the entropy per unit area. The above formulae are employed for the 
TC conductivity calculations. 

3. Transverse component of the thermal conductivity 

As was mentioned above to obtain the transverse TC component Kjk  (defined as Qi = 
-KikVkT) we have to calculate the thermodynamic potential 52 per unit area. The latter can 
be expressed in terms of the Green function [20]: 

Here GR and GA are retarded and advanced Green functions in the mixed coordinate- 
frequency representation respectively. These functions obey the Dyson equation that in the 
case of the electron-impurity interaction takes the form [20.21]: 

GRSA(r, T', w) = G")R,A(~,  r', w) + / drlG'o)R,A(r, T I ,  W)U(T I  - r , )GR.A(~ l ,  T', w) 
D 

(7) 

with G(" being the Green function of free electrons, U(T) and T, are the impurity potential 
and position respectively; equation (7) should be averaged over impurity positions. A 
general way of describing the effect of impurities on electronic propeties in strong magnetic 
fields is a very complicated problem that has not been solved exactly so far (see e.g. the 
discussion in [22] and 1231). However a certain progress can be achieved if one employs 
the SCBA [24,6], which is valid for a weak short-ranged impurity potential. Let us assume 
the random impurity potential to be weakly disordered: 

( u ( r l ) U ( r z ) )  = 2it12u~6(rl - T2) (8) 

where U is a characteristic energy to be interpreted as the impurity potential amplitude, 
1 = (c /eE)' /2  is the magnetic length and angular brackets denote the averaging over impurity 
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positions. If U is much less than the chemical potential p only diagrams in the lowest order 
of the impurity scattering should be taken into account. If the magnetic field in the Landau 
gauge is used (AY = Bx) it is convenient to introduce 'momentum' (n, p, ,  w )  representation 
for the Green function (cf. fl51). One has 
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with +=(x - cpy/e B )  and on = (n + $)ac being the nth harmonic oscillator wave function 
and eigenvalue respectively, oc = eB/mc is the cyclotron frequency. In the SCBA the 
'momentum' Green function is independent of momentum p y  and Grin, = GJ,,,. In this 
representation equation (7) within the SCBA is rewritten as follows (see figure 1): 

G,(w) = G~o)(w) + u2Glp'(o) G,,(w)G,(o) 
"' 

which implies 

G;A(w) = [U - w. - CR**(o)]- I 

where X R s A  is the retarddadvanced self-energy, which satisfies the equation 

+ - =  - 
Figure 1. The Dyson equation for the one-electron Green function within the SCBA: solid and 
double lines represent the Green function of the free electron and the dressed one respectively; a 
cross is impurity potential while a dashed line denotes the averagiog over impurity pasitions. 

Finally, in the high-field approximation (wC >> U )  equation (12) is quadratic and can be 
easily solved [24,6]: 

Here w~ is the energy of the Landau level nearest to the chemical potential. Using 
equations (6), (9), and (13) we obtain for the thermodynamic potential 

A term from the Landau level nearest to p contributes to the sum in equation (14) only 
because terms corresponding to other Landau levels lead to corrections of order u2/02 that 
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are to be omitted in the high-field approximation. An explicit form of self-energy (12) 
implies that the denominator of this term is exactly U*.  After some algebra the expression 
for the non-diagonal TC can be reduced to a form 

where we have used the fact that K~~ = -K~.. The above expression gives the general SCBA 
formula for the TC non-diagonal component that has to be investigated in different cases. 

In the limiting case U << T <( U, (the pure electronic system) the first factor in 
equation (15) can be considered as independent of g. The expression for the TC is now 
reduced to 

(16) 
IL dp' (P' - @A2 

Ky" = 1, % 4T2cosh2[(p' - on)/2T] ' 

This dependence has a step-like shape (see figure Z(a)). When lp-0~1 >> 4T the TC exhibits 
smooth plateaus with height nTn/6 with n being the number of filled Landau levels. In the 
region of width approximately 4T from each half-filled Landau level (fi  N wc(n + 1)) the 
dependence shows steps each with one additional curve in the half height of the step. As is 
well known the Hall conductivity also shows steps as a function of chemical potential but 
these peculiarities are absent. So the Wiedemann-Franz (WF) law is violated in the limiting 
case U << T. The value of the TC on the large plateau satisfies the WF law. 

In the opposite limiting case of low temperatures or strong impurity potential (T << 
U << oc) the temperature is the lowest energy scale and the integral over de with the Fermi 
distribution function derivative in equation (15) can be treated as usual. This leads to 

where the fact is taken into account that only the region e N (fi - 4 / 2 0  contributes to 
the integral of equation (15). 

Equation (17) also corresponds to a step function but one of rather different shape 
(figure 2(a)). The plateau height is the same that of the preceding case (xTn/6), the step 
width is determined by the random potential and is now exactly 40 (this is the range of 
energies where the imaginary part of self-energy (12) is non-zero). The shape of a step can 
be calculated exactly from equation (17): 

1 

A K . ~  = K&L) - K ~ ~ ( o L )  = + [ 1 - ( yy ] '1 . (18) 6 

Results for intermediate cases cannot be obtained analytically. Numerical results for 
various u / T  according to equation (15) are shown in figure 2(b). 
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Figure 2. Results for the tramverse 'IC component: K ~ ~ ~ T  in units of k;/h as a function of 
&/ac; oc = 1007 for various 0: (a) a general shape of the dependence; (b) the shape of the 
first step peculiarity far vmous c / T :  0 (curve 1). 0.5 (clwe 2). 1.5 (curve 3). 10 (curve 4). 

4. Diagonal component of the thermal conductivity 

It follows from equation (4) for the TC diagonal component that 

The fact [24] that vertex corrections are absent in the SCBA is taken into account in 
equation (19). It is also convenient to use the 'momentum' representation (n .  p .  o) as 
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was done in section 2. After the integrals over dxl and dp  are calculated we obtain 

In the limiting case in question, U << o,, this expression can be simplified to the following 
form: 

This dependence has the form of peaks localized in the vicinity of points p = 0,. In the 
case when T << U << U, the integral can be calculated as was done in section 3. The peak 
width is approximately T and its height (achieved at the point p = U,) is T(n  + 1)/12 

In the inverse case U << T << o, the peak shape differs significantly from figure 3(u). 
Two maxima arise at points with p Y U, f 5T/Z and the distance between the maxima 
does not depend on U .  On the contrary, the maximum value is governed by U only and 
is about 0.030. At the point p = on a minimum appears instead of the maximum in the 
preceding case; the value at this minimum is 2cr3(n+ 1)/1Sn2T2 and it is small in the case 
under consideration. The shape of the peak for different values of the ratio u / T  is shown 
in figure 3(6). One can see that the double-maximum shape tends to a single-maximum one 
as o f T grows. 

(figure 3 ( 0 .  

5. Discussion 

Universal expressions for both components of thermal conductivity are obtained within the 
SCBA if the spin splitting of the Landau level is neglected. As is seen, the transverse TC 
component exhibits wide plateaus just like the transverse electrical conductivity (see [I]), 
and its plateau value exactly satisfies the WF law in all cases (K,,/o~,T = n2/3e2). This 
can be easily understood because the WF law is a consequence of the low-temperature 
expansion of integrals such as equation (15) with the derivative of the Fermi distribution 
function (see [=I). This expansion can be justified in the case under consideration when 
lp - W L I  >> max(T, U ) ,  which corresponds exactly to the plateau regions. So the plateau 
height is concerned with that in the transverse electrical conductivity. The situation is 
different around the steps. First, the shape of a step essentially depends on ratio cr/T: for 
U > T the step is sharp with width governed purely by U; in this case the WF law holds for 
any values of chemical potential [9]. Finite temperature dramatically changes the situation 
however (figure 3). The step becomes wider and in the inverse limiting case U << T its 
width is governed by the temperature only. Moreover, an additional curve appears at the 
half width of the step also with width governed by the temperature. So the WF law breaks 
down at finite temperatures in the region around the step (p N oc(n + 4)). 

The diagonal TC component shows a series of peaks as a function of chemical potential. 
The shape and height of the peaks strongly depend on the same parameter u/T. In the limit 
U >> T (rather high disorder or rather low temperatures), each peak has one maximum only 
corresponding to the half-filled Landau level (p  = oc(n + i)); the peak width is governed 
by the impurity potential while its height is related to the temperature. The WF law holds 
in this case (as for the transverse TC component) in contrast with the conclusions of [lo]. 
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Figure3. Results for the diagonal 'rc component: xu f T in units of kilR as a function of p/o ,  
for various alT 0.1 (curve l), 1 (curve 2), 4 (curve 3), 10 (curve 4), 20 (curve 5). (a) A 
gene14 shape of the dependknee, wc = 100T; (6) the shape of che fin1 @, c =250T. 

When temperature is finite (u/T drops) the peak broadens and the TC value at its maximum 
decreases. For U << T the shape of the peak is significantly different: the peak has two 
maxima and one minimum [IO], the latter at /I = oc(n + i), and the distance between 
the maxima depends on the temperature only while its height is governed by the impurity 
potential. Because the diagonal electrical conductivity exhibits simple-maximum peaks for 
arbitrary ojT [ 1,101 one can conclude that the WF law breaks down for both TC components 
for finite temperatures in the vicinity of the Landau level positions. 

The reasons for WF law violation can be clarified by consideration of TC components in 
terms of electric conductivity (6 = i l l )  and thermopower (i = T-li&l). One can see 
that 
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where Lo = (rrZ/3)(k~/e)* is the standard Lorentz number. So the source of deviation 
from the WF law is the fact that thermopower components are not small due to the rapid 
variation of electronic density of states. In particular, it is seen that the changing of the 
sign of S,, midway between plateaus in axy [6] is responsible for the appearance of a small 
extra plateau in K.~. 

Let us briefly discuss the effects of spin splitting. 'As is known these effects must be 
taken into account in the expression for energy eigenvalues: ?ono = w,(n + 4) + a g p B ~ / 2  
with a being the spin projection. Each singularity (steps for the transverse TC and peaks 
for the diagonal one) splits now into two. In the case when the distance between the 
split Landau sublevels gpB B/2 is much greater than max(u, T }  two separate singularities 
appear of the shape and size described above.,(with the height being half of the calculated 
value). In the case when this distance is approximately equal to No,, N being an integer, 
these singularities mix together and the dependence is more complicated than that described 
above. 

We have also to compare our results with those obtained by Oji 19, IO]. Firstly it is 
worth noting that Oji's approach is of phenomenological rather than microscopic character 
and moreover only the case of weak disorder ( a  << T )  was considered in 191 and [lo]. 
Our microscopical approach based on the Green function technique provides a correct way 
to take into account all interaction effects with arbitrary strength of disorder. In the limit 
of weak disorder our results appeared to be in qualitative agreement with [9] and [IO], 
but more refined. As was mentioned above, strong disorder (a >> T )  drastically alters the 
behaviour of TC components, leading to results never found by Oji. 

es of  the experimental verification of effects 
described above are needed. First of all we note that measurements of electronic thermal 
conductivity in semiconducting structures are quite difficult because the lattice heat capacity 
dominates the electronic one and masks the effects of direct electron gas heating. Hence 
special methods to extract experimentally the electronic contribution to thermal Conductivity 
are required, as was proposed for instance in [26]. In the usual experimental situation an 
impurity potential is quite strong and for fields B N 1 T, a is usually greater than the 
order of 0,. In this case naturally a >> T always and the only corresponding dependencies 
could~be observed (the WF law is valid in this limiting case). To observe a different shape 
of dependences one requires rather strong magnetic fields (maybe of order 10 T) and low 
temperatures. 

In conclusion a few words on the possib 

. .  
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